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Challenges in protein classification

1. Remote homolog detection.
How much information does knowing a remote
homolog provide?

. Phylogenetic context is critical.
Paralogs can have divergent function (so can
orthologs...)

. Domain structure issues.

. Some fraction of the annotations in the
sequence databases are not exactly accurate.




Function and Structure
Prediction by Homology

If you have a sequence you know nothing about,

find a relative.

. Given one member, find the
relatives...
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Homolog identification and profile construction
helps differentiate critical features from variable




Profile
generalization
allows us to
identify some
truly remote
relatives

“Evolution conserves structure
and function”

But not completely.




Defensin-related proteins
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Why not just use BLAST?

Poor performance in remote
homolog detection compared to
HMM methods.

Park, J., Karplus, K., Barrett, C., Hughey, R., Haussler, D., Hubbard, T.
& Chothia, C. Sequence comparisons using multiple sequences detect

three times as many remote homologues as pairwise methods. J. Mol.
Biol. 284, 1201-1210 (1998).




Delete/skip

Insert

Originally used in speech recognition (Rabiner, 1986)
Proposed for DNA modeling (Churchill, 1989)
Applied to modeling proteins (Haussler et al, 1992)

* Multiple sequence alignment

* |dentification of related family members (“homologs”)

Hidden Markov Models in Computational Biology: Applications to Protein
Modeling. Krogh, Brown, Mian, Sjolander and Haussler, J. Mol. Biol. (1994)

Homolog recognition in the Twilight Zone
CASP2 Target T0031

1AGJA
(T0031)
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—>

TRYPSIN EXFOLIATIVE TOXIN A
Fusarium Oxysporum Staphylococcus aureus
(Fungus) (Bacteria)

For homolog recognition in the Twilight Zone, we need to know:
Which positions are critical?
Where can we allow deletions or mutations?




Homolog detection is
just the first step...

Correct functional classification
requires attention to evolutionary
relationships

Example 1: Orphan GPCR classification
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Is the

query an
FMLP
receptor?




Or a
chemokine
receptor?

Or a C5A
Anaphylatoxir
chemotactic
receptor?

Or...7?

Or a novel
type of
receptor?




Another reason to not rely
on pairwise sequence similarity

What if the top-scoring match is
incorrectly annotated?

Example 2: Errors in database
annotations
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The top matching BLAST hits are also

putative odorant receptors
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Lessons from CASP2

P 1. HMMs optimized for

remote homolog
detection generally
require clustering and
alignment of many
divergent sequences.

. Alignments of new
sequences to these
HMMs can be pretty

awful.

Given a protein sequence (“target”), predict ‘.’¥}c ll'rlnos’r likely fold, and
produce an alignment of the target and the solved structure. Predictions
judged using structure-structure alignment (SCOP, VAST, DALI).

Conflict

For effective remote homolog
detection, a profile or HMM
needs information from
divergent family members

Without this context, we cannot
differentiate critical from
variable positions

HMMs constructed with such
data provide a coarse
classification
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Subfamily HMM
construction

How to build Subfamily HMMs
(SHMMs)

Share statistics between
subfamilies where there
is evidence of a common
ﬁlesefg ?’Fc;q?snr'i cs separate
. at positions where there
+: is evidence of divergent
" structure.

Improved specificity, sensitivity,
alignment accuracy

13



Step 1: Form Dirichlet Mixture Posterior

At each position, for each subfamily, construct a
Dirichlet mixture posterior, by combining
the Dirichlet mixture prior with the amino acids
aligned at that position by that subfamily.

(Weighted) subfamily counts

Mixture
coefficient

Component

Parameters
(Weighted) subfamily counts of amino acid i

Step 2: Calculate family contribution

Other subfamilies contribute, proportional to the probability
of the amino acids they aligned at that position, given the
revised Dirichlet mixture density.

fi=Ssus  P(is | O nei

(Weighted) counts
from subfamily s

UUUuUuuUuo
< HMRBERIQH

(Formula for computing Prob (n | ) are in Sjolander et al, 1996)
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Step 3: Compute pseudocounts

Add the family contribution to the observed (weighted)
counts, to obtain the pseudocounts ¢ of amino acid i:

(Weighted). subfamily counts family
for subfamily s contribution

Step 4: Compute amino acid probabilities

Normally, we compute amino acid probabilities by
combining a Dirichlet mixture prior with observed
counts as follows:

. . . 3 i =+ agt
pi= Y Pig | n)——————
/ la|+|d|
Instead, we will estimate the probability of amino acid § as follows:
I L

= : =
pi= Y Plaj| i) -
' ERERE- N
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Subfamily HMM Performance
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Socrates’ First Command:
Know Thyself

Test 1. How accurate are subfamily HMMs at
recognizing their own training sequences?

Test 1: Training Sequence Recognition

Recognition of training sequences

Percentage scoring above
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NLL-NULL score cutoffs

% sequences found above cutoffs: SHMM method 100%

GHMM method 99.89%
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Honor thy father and thy

mother

and thy brothers and sisters

and aunts and uncles

and cousins

and second cousins
and third cousins twice removed...

Recognition and classification of
tamily members

Test 2: PSI-BLAST homolog detection
Average Per Family

Average Psi-BLAST homolog detection
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Subfamily HMMs improve homolog detection
(relative to BLAST or a single HMM for the family)

Uoverage verss B for seop-1.57
R 11D B 40 dataset 4,013 seqs
: il For cach structure, homologs were

gathered and aligned using SAM-
T99 (from UCSC). A general HMM
for each family was constructed
from each alignment using Karplus
sequence weighting and Dirichlet
mixture densities. Subfamily
HMMs were created from the same
alignment. All PDB40 sequences
were scored against each cluster,
and assigned a general HMM score
and the best Subfamily HMM
(SHMM) score. Scores were sorted

by significance. Homologs are
determined by the SCOP database.

Fragments and EST's
can be especially challenging
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Training sequence fragment detection

Training Sequence Fragment Detection Specificity of fragment assignment
Using NLL-NULL Cutoff -18 NLL-NULL score cutoff -18
100 T
sl 100
| - °
% scoring g0t 2 98
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2% 96
o 2
HE
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Fragment Length 1920 25 10 11 12 13 14 15 16 17 18 19 20 25
0 General HMM 0 Subfamily HMM Fragment Length

PDB40 experiments.
Fixed cutoff chosen to provide zero FP for sequence lengths <= 25

PDB40 homolog fragment detection
(HMM score and BLAST cutoffs chosen to give
zero false positives for all fragment lengths )

Percent PDB40 homaolog Iragments found

Paroant
SOOTINg
abaive cutoft

Fragenand Langih
B BLAST DIGHMM @ SHMM W ALL HMME
10 15 20 25

Subfamily HMM / ALL: 6.59% 9.36% 10.28% 12.16%
General HMM: 2.06 3.69 6.81 9.25
BLAST: 0.57 0.43




FlowerPower

Iterative clustering and alignment tool

Step 1: Identify putative homologs to
query sequence (Q)

PSI-BLAST
3 iterations
E-5 cutoff
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Step 2: Select initial training set

Step 3: Align initial set, identify subfamilies,
and build subfamily HMM:s.
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Step 4: Identify and aligh new homologs.

1. Search with subfamily and general HMMs.
2. Accept hits above threshhold.
3.

Step 5: Run BETE to identify subfamilies,
and build new subfamily HMMs.

23



Step 6: Iterate




convergence.

HMM performance improves with improved alignments
(Preliminary results)

LOVETIZe Versus Errar for scop-1.57

]

|— BLAST
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T CTH NS
— FPLGHBR
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A Tale of Two Domains

Hidden Markov models,
Potassium channels,
Excursions in the Twilight Zone
and some stories about startups...

Step 1: Build an HMM, and identify putative
homologs

Seql -96.001
MIVSTGPKSSTALM sl ivily Seq2 -95.134
MVVSTGPKS-TAIM NN = Seq3 -94.865
MVVSSGPKSTTAVF AN Seq4 -92.754

MVVSSPPRS-TAIF Seq5 -92.708
MVVSGPPHS-TAII Seq6 -62.343

. Seq7 -52.119
MSA of family Putative homologs Seq8 -31.560

members Seq9 -31.548
DB Scores

Underlying assumption: Domain-level matches to the HMM will
cluster in specific regions, while sequence fragments will align over
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>Seg6
MIVSTSG
>Seq7
MVVTTG
>Seg8
SP
>Seq9
PP

L[s,p] = log Prob (s, | HMM)

Alignment used as basis for HMM

Alignment of
database hits

Log likelihood
(Affinity)

s, = amino acid aligned by
Prob (Sp) sequence s at position p.
Define L[s,p] = O when s, is a gap
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Step 4: Cluster affinity vectors

AN )

Clustering of vectors
Agglomerative clustering

Id
Euclidean distance ”““‘/‘M
Cluster termination cutoff //

12 3 45 6 7 8 9 101112 13 14

Plot LL clusters
(simple average)

-4 Cyclic-Nucleotide-Gated K+ Channel
ES HMM Alignment Analysis

:
S
g

Transmemb@anes re o
c-AMPie-GMP binding
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Analysis of CNG K+ domain structure
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‘ll [ Cyclic-nucleotide-
[ gated K+ channels

Log likelihood

I
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—— Kinases, catabolite
gene activator
protein, PDB
structures

CNG K+ channel HMM positions (1CGPA,etc.)

Transmembrane region=s== c-AMP/c-GMP binding

Catabolite Gene Activator Protein (CAP)
bound to DNA
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Superfamily: ¢ AMP-binding domain
Lineage:
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Analysis of Voltage-gated K+
channels domain structure

TNF-alpha-induced protein B12 and
K5+ channel tetramerization domain (1T1DA)

—— Tetramerization
domain of K+
channels

— Similar to TNF-
alpha-induced
protein B12 (30
seqs)

log likelihood
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TNF-alpha-induced protein B12 and K+ channel
tetramerization domain (1T1DA)

Predictions:

log likelihood

v h o wa o

MSA columns

® Structure of TNF-alpha
induced protein B12 is

- » homologous to K+ channel
tetramerization domain

1T1DA ® Does TNF-alpha induced
Tetramerization Domain protein B12 affect K+ channel

of K+ channels function by interacting with
tho K+ channel T1 domain?

Web server for high-throughput
functional classification of proteins

3D
structure
viewer

equence
Malignment

Phylogenetic . |s Attribute

tree, with L1 3 L. Bldata table
subfamily -1 s

decomposition

Enable and foster virtual collaborations, scientific discovery,
correction of errors in database annotations.




Stalking disease-resistance

proteins in rice

Toll Interleukin 1 domain
PDB structure 1TFYX

Joint work with Barbara Baker and Brian Staskawicz
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Plant and Animal Innate Immunity Mediated by Structurally
Similar Receptor and Receptor-like molecules
- Urosophila
i BRI E Mammals
Clavata Toll I-1R
Erecta
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L Hormone | Dosiventral « Immonity
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Conserved “ scaffolding” proteinsin cell death
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tobacco N §

CARD: CAspase Recruitment Domain
Nod is implicated in CrohnAs disease
N is involved in plant Hypersensitive Response (HR)
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TIR domains missing from monocot species...

AMonocot sequences are absent from the TIR subfamilyA
AToll/Interleukin-1 receptor homology (TIR), A was entirely
absent from monocot species in searches of both random
genomic sequences and large collections of ESTSA

Searching the rice
genome with general
and subfamily HMMs
for the TIR domain...

1| 14587298 gets top score (e-12 to TIR structure)
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Alignment of rice sequence to

Toll-like receptor 2 (TLR2) subfamily
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Alignment to APAF_Human (and homologs) NBS domain
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BLAST fails to detect TIR domain
homologs for thlS sequence
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Clustering and aligning homologs
with FlowerPower
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